11,795 research outputs found

    Improvement of irregular dtm for sph modelling of flow-like landslides

    Get PDF
    Irregular topography of real slopes largely affects the propagation stage of flowlike landslides and accurate digital terrain models (DTMs) are absolutely necessary for realistic simulations and assessments. In this paper a simple yet effective method is proposed to improve the accuracy of existing DTMs which is applied to the topographical models used in well equipped laboratory experiments. Aimed at evaluating the effects of different DTMs in the results of the propagation modelling, a depth-integrated SPH model is used to simulate two series of laboratory tests referring to a frictional rheological model while using either the available DTM or the DTM improved through the proposed procedure. The obtained results show that the proposed method provides a more accurate topographical model for all the analyzed cases. Particularly, the new topographical model allows better reproducing the laboratory evidences in terms of run-out distances, inundated areas and geometrical characteristics of the final deposits. Furthermore, SPH analyses with progressively finer topographical inputs outline the role of DTM’s precision towards the accuracy of the numerical simulations

    Absorbing phase transition in a conserved lattice gas with random neighbor particle hopping

    Full text link
    A conserved lattice gas with random neighbor hopping of active particles is introduced which exhibits a continuous phase transition from an active state to an absorbing non-active state. Since the randomness of the particle hopping breaks long range spatial correlations our model mimics the mean-field scaling behavior of the recently introduced new universality class of absorbing phase transitions with a conserved field. The critical exponent of the order parameter is derived within a simple approximation. The results are compared with those of simulations and field theoretical approaches.Comment: 5 pages, 3 figures, accepted for publication in J. Phys.

    Sph propagation modelling of an earthflow from southern italy

    Get PDF
    Natural slopes in clayey soils are often affected by failures which may cause the onset of landslides of the flow type travelling large distances and damaging buildings and major infrastructures. Particularly, the so-called earthflows pose challenging tasks for the individuation and forecasting of the remobilized masses; as a consequence, the mathematical modelling of the propagation stage allows enhancing the understanding of earthflows in order to obtain reliable assessments of run-out distances and displaced soil volumes. This paper deals with the reactivations of Montaguto earthflow (Southern Italy) occurred from 1998 to 2009 that are simulated, through the depth-integrated “GeoFlow-SPH” model, thanks to the availability of a detailed data-set. The achieved results provide a satisfactory agreement with the in-situ information and outline how a change of the rheology of the mobilized masses can affect the whole phenomenon

    Spectral distortion of cosmic background radiation by scattering on hot electrons. Exact calculations

    Get PDF
    The spectral distortion of the cosmic background radiation produced by the inverse Compton scattering on hot electrons in clusters of galaxies (thermal Sunyaev-Zeldovich effect) is calculated for arbitrary optical depth and electron temperature. The distortion is found by a numerical solution of the exact Boltzmann equation for the photon distribution function. In the limit of small optical depth and low electron temperature our results confirm the previous analyses. In the opposite limits, our method is the only one that permits to make accurate calculations.Comment: 18 pages, 7 figures, to be published in Ap

    Collective versus hub activation of epidemic phases on networks

    Full text link
    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large exponent, at odds with canonical theoretical approaches.Comment: Revised version accepted for publication in PR

    Phase transitions with infinitely many absorbing states in complex networks

    Get PDF
    We instigate the properties of the threshold contact process (TCP), a process showing an absorbing-state phase transition with infinitely many absorbing states, on random complex networks. The finite size scaling exponents characterizing the transition are obtained in a heterogeneous mean field (HMF) approximation and compared with extensive simulations, particularly in the case of heterogeneous scale-free networks. We observe that the TCP exhibits the same critical properties as the contact process (CP), which undergoes an absorbing-state phase transition to a single absorbing state. The accordance among the critical exponents of different models and networks leads to conjecture that the critical behavior of the contact process in a HMF theory is a universal feature of absorbing state phase transitions in complex networks, depending only on the locality of the interactions and independent of the number of absorbing states. The conditions for the applicability of the conjecture are discussed considering a parallel with the susceptible-infected-susceptible epidemic spreading model, which in fact belongs to a different universality class in complex networks.Comment: 9 pages, 6 figures to appear in Phys Rev
    • …
    corecore